IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

International Journal of Solids and Structures 41 (2004) 1725-1738

Analysis of the localization of deformation and the complete
stress—strain relation for mesoscopic heterogeneous
brittle rock under dynamic uniaxial tensile loading

Xiao-ping Zhou *

School of Civil Engineering, Chongqing University, Chongging 400045, PR China
School of Civil Engineering and Mechanics, Shanghai Jiaotong University, Shanghai 200030, PR China

Received 28 September 2002; received in revised form 30 July 2003

Abstract

Stress redistribution induced by excavation results in the tensile zone in parts of the surrounding rock mass. It is
significant to analyze the localization of deformation and damage, and to study the complete stress—strain relation for
mesoscopic heterogeneous rock under dynamic uniaxial tensile loading. On the basis of micromechanics, the complete
stress—strain relation including linear elasticity, nonlinear hardening, rapid stress drop and strain softening is obtained.
The behaviors of rapid stress drop and strain softening are due to localization of deformation and damage. The
constitutive model, which analyze localization of deformation and damage, is distinct from the conventional model.
Theoretical predictions have shown to consistent with the experimental results.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress redistribution induced by underground engineering and slope engineering excavation results in the
tensile zone in parts of the surrounding rock mass. It has been observed that the ultimate failure strength of
rock is rate sensitive under dynamic uniaxial tensile loading. It is of important significance to investigate the
localization of deformation, and to study the complete stress—strain relation for mesoscopic heterogencous
rock under dynamic tensile loading.

Efforts have been made to study the mechanism governing the rate-dependent behavior of rock mate-
rial under dynamic tensile loading. These researches on constitutive relation are mostly based on the
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assumption of visco-elastic or visco-plastic model for rock material (Blanton, 1981; Chong et al., 1980;
Okubo et al., 1993; Jin, 2001).

Rock material is typically inhomogeneous, containing initial defects, such as grain boundaries, micro-
cracks and pores. Rock materials fail through fracture preceded by countless microcracks distributed over
the bulk of rock and propagating under dynamic tensile loading. Since the problem is complex, up to now
the problem is not solved by the micromechanical approach.

In this paper, based on the micromechanical approach proposed by Zhou (in press), the localization of
deformation is analyzed and the complete stress—strain relation for mesoscopic heterogeneous rock under
dynamic uniaxial tensile loading is investigated. The model leads to an overall anisotropic response due to
the growth of tensile cracks. The overall damage evolution equations as well as the complete stress—strain
relation in both the axial and transverse directions are obtained for rock material containing a number of
randomly oriented preexisting microcracks. As an illustration, theoretical stress—strain curves of rock
material under dynamic uniaxial tensile loads is given and compared with the experimental results.

2. Theoretical model

Consider a representative volume element featuring a mesoscopic length scale which is much larger than
the characteristic length scale of microcrack, but smaller than the characteristic length scale of a macro-
scopic specimen. Establish the global coordinate system (x,x;) and corresponding local coordinate system
(¥}, x5), in which x}-axis is parallel to the normal vector n. It is assumed that the preexisting microcrack sizes
randomly vary within the range (2¢y, 2¢,), its normal forms an angle 6 with respect to x,-axis as depicted in
Fig. 1.

Under static uniaxial tensile loading, the stress intensity factors at the crack tip take the following form:

K, = 0, cos’ 0y/7c, (1)

where K7 is the mode I stress intensity factors.
The criterion of microcrack growth under static uniaxial tensile loading in a stable fashion is

K; = Kic (2)

in which Kjc is the mode I critical stress intensity factor at weak plane under static tensile loading.

Fig. 1. Crack-weakened rock subjected to uniaxial tensile loading.
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Under dynamic loads, crack growth velocities have a great influence on the dynamic SIF. In most cases,
the dynamic SIF can be expressed as (Freund, 1973, 1990)

KID = k(l))K], (3)

where Kip is the dynamic SIF, K is the static SIF, k(v) is a function of crack growth velocity (v). The
function k(v) = 1.0 when v = 0, and k(v) = 0 when v reaches the critical velocity of the crack growth, which
is normally regarded as the velocity of a Rayleigh wave in the rock material.

The crack instability condition under dynamic loads is written as

Kip = K., (4)

where Kl is the mode I critical stress intensity factor at weak plane under dynamic tensile loading, Kip is
the mode 1 dynamic SIF.

The mode I dynamic stress intensity factor, for two-dimension in-plane crack growth, has been estab-
lished by Freund (1990). The dynamic stress intensity factor may be estimated by multiplying the equivalent
static stress intensity factor by an approximate formulation of k(v) for brittle material (Freund, 1973, 1990):
U — v

k(v) = m (5)
when the tensile crack is loaded by only far field uniform stress, where v; is the velocity of Rayleigh wave,
' :Sfl(‘ibls/ticzl)t.ing ( 1) and (5) into (3), the mode I dynamic stress intensity factor can be written as

Kip = O — 5 — 0, cos’ Oy/nc. (6)
Substitution of (6) into (4), we have

o — K (v, — 0.50) ™

(v; — v) cos? 0y/mc’
where K is the mode I critical stress intensity factor at weak plane under dynamic tensile loading.

From (7), it is clear that the first microcrack to become unstable is oriented along 8 = 0 direction and
with maximum initial size ¢, the corresponding threshold load is defined as

K- (v, — 0.50)
O =—F ———~ — -

(v — v)y/7c,
Since microcrack sizes randomly vary within the range (2¢y, 2¢1), the maximum and minimum micro-
crack size ¢; and ¢, should be used in (7) instead of ¢ in order to determine the critical domain of unstable
microcrack growth. Therefore, (6) and (7) can determine the maximum angle, 0,;, at which microcracks

with maximum initial size ¢; become unstable. Similarly, the minimum angle, 6,9, can be determined, at
which all microcracks become unstable.

(®)

(v — 0.50)K}% (v — 0.50)K% } 12 )

(0r — v)aa2y/TCy (vr — v)02y/TiCy

In addition, at a specified microcrack orientation 6 within the range (0,9, 0,1), the minimum microcrack size
required to activate mode I growth can be evaluated from (7)

1/2
0,1, = arccos [ ] , 0,0 = arccos [

v, — 0.50)*(K4.)?
col :( - ) ( IC) . (10)
(vr — v)"o3mcos* 0
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If 0 < 0, < 0., that is, the stage of linear elasticity, no microcrack growth begins. The compliance tensor

attributable to a single open crack is given by (Sumarac and Krajcinovic, 1987)

o _ 2nc (1 —v3)
Y AE,

where A is the representative element area of rock material, Ey is Young’s modulus, vy is Poisson’s ratio, g;;
are the components of the transformation matrix between the two coordinate system:

(22i82) + 83i83)), (11)

cos’ sin®0  sin20
[g] = | sin®0 cos?0 —sin20

sin 20 sin 20
e cos 20

The inelastic compliance tensor due to all preexisting open microcracks with the original sizes can be
evaluated by

) 1 —2 3 ra
S3=L;;Qg//‘@ww+&gwmamwémﬂa (12)
0 Jeo

where p = N /A4, and N is the number of microcracks, 4 is the representative element area of rock material,
p(0) and p(c) are the probability density function describing the distribution of orientations and sizes of
microcracks in rock material, respectively. E, is Young’s modulus, v, is Poisson’s ratio.

The overall effective compliance tensor can be obtained as

Sy =S+ 5] (13)

in which Sg. is the elastic and isotropic compliance of an undamaged rock material with Young’s modulus
E, and Poisson’s ratio vy.
During the stage of linear elasticity, the stress—strain relation takes the following form:

0 il
If 6, = 0., the microcracks in the plane 6 = 0 with maximum initial size 2¢; become unstable and increase
in size until reaching maximum characteristic length 2c,.
If 05 <03 < 0y (02 1S ultimate strength of rock material), that is, the stage of prepeak nonlinear

hardening, more microcracks become activated, the compliance tensor contributing from stable and un-
stable microcracks, S;}, Sl’j2 can be computed as follows, respectively:

st = L2%) [0 [ e+ angy)ple)p(0) dedo
i TR p , 82i82j 1+ 83i83; )¢ p(c)p ¢
ul

<o

(1=v3) [0 [ >
+—E0 p /6 / (22182 + g3ig3;)c”p(c)p(0) dedo, (15)
uo (0]

o (1- V%) ho e 2
Sl.j = Top (82182 + g3ig3;)c"p(c)p(0) dedO
0 <)

1—V2 041 pc2
P02 [ gy + gugs)p(clplo)dedo, (16)
where

. — 0.50)Kd 12 . — 0.50)K¢ 1/2
6,1 = arccos {(UU)'C] , 0,0 = arccos [(UU)IC] ,

(vr — v)o2y/TCT (vr — v)o2\/TiCy
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(v — 0.50)7(KE.)?

(v, — v)’a3mcost 0

Co1 =

The overall effective compliance tensor can be expressed as
0 il 0
S,‘j :Sij+Sij +Sij‘ (17)
During the stage of prepeak nonlinear elasticity, the stress—strain relation can be written as
&j = (S?j + Slljl + S;?)O'ij- (18)

Under high stress, some microcrack arrested by the energy barriers, like grain boundaries, will satisfy the
second growth criterion and propagate in an unstable fashion, causing localization of deformation and
damage. The second growth criterion under dynamic uniaxial tensile loading can be written as

KID = Kldcca (19)

where Kt is the critical value of SIF describing the resistance of rock material against microcrack growth
under dynamic loading.

According to (6) and (19), it is clear that the first microcrack to become unstable are oriented along 6 = 0
direction and with maximum characteristic size ¢, the corresponding peak load is defined as

d
Cree = % (20)
(0r — v)y/TC2
If 0, < 03, no microcrack propagates in an unstable fashion.

If o, = 0y, that is, the stage of rapid stress drop, some microcracks nearly normal to the tension
direction and with maximum characteristic size ¢, propagate in an unstable fashion. As mentioned above,
the distribution of sizes and orientations of microcracks in rock material can be described by the proba-
bility density function p(c) and p(6), respectively. If the number of microcracks normal to tensile direction
is zero, it is assumed that microcracks whose orientations are within a small orientation scope 0 <0< 6.,
and with maximum characteristic size ¢, propagate in an unstable fashion.

Once Eq. (19) is satisfied by microcracks whose orientations are within a small orientation scope
0<0< 0, and with maximum characteristic size c,, they will experience the secondary unstable growth,
which may cause a transition from the distributed damage to the localization of damage and a rapid stress
drop at the transition strain ¢.. During the stage, only microcracks whose orientations are within a small
orientation scope 0<6<0., and with maximum characteristic size ¢, propagate further and other
microcracks undergo elastic unloading. In strain-controlled tests, the deformation which has received
contributions from all microcracks during the first two stages concentrates gradually to the minority of
microcracks experiencing the secondary growth, which results in a localization of deformation. Therefore,
the macroscopic stress drop is the result of the localization of damage and deformation.

The relation between c¢; and ¢ can be obtained approximately from the criterion (19), we have

(1)

C3 =

The compliance tensor due to the microcracks experiencing the secondary growth can be obtained by

=)
Si; :TOP A (8282 + g3:83;)p(0)p(c) dedo. (22)
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The compliance tensor contributing from unstable microcracks can be evaluated as

p_(L=vy) [here 2()p(0) dedo
Sl.j =& p ; (22182 + g3ig3;)cp(c)p(0) de
o

(1-v) be e 2
+ 5’ ) (£2i82; + g3ig3;)c”p(c)p(0) dedd, (23)
u2 €01

where
(v — 0.50)K % (v — 0.50)K % 12
(0r — V) O2eer/TCY (v — V) O2ecr/TCO

The compliance tensor attributing to stable microcracks can be computed as

1/2
0,3 = arccos { } , 0,, = arccos

1 (1—=2 5o
50 =02 [ [ ga + eug)plelp(o)deco

o

(=) [ :
+ E—OP y (82182 + g3i83;)c"p(c)p(0) dedo. (24)
u2 0

c
During the stage, the stress—strain relation can be evaluated by

&j = (S + S} + S + S2)ay;. (25)
During the stage of stress drop, the strain maintains constant, we have

Ece = &2, (26)

where ¢, is the axial strain at peak loads gy, & is the axial strain during stage of stress drop.

According to (26), the magnitude of the stress drop can be determined. It is assumed that the stage of
rapid stress drop intersects that of tension softening at the point where the value of stress is oy.

If 0, < oy, that is, the stage of strain softening. During the stage of strain softening, some of the mi-
crocracks which have undergone the secondary growth will propagate further, while other microcracks will
simultaneously experience unloading. Meanwhile the growth criterion (19) must be satisfied by microcracks
whose orientations are within a small orientation scope 0 < 6 < 0., and with maximum characteristic size c¢;.
The compliance tensor due to the microcracks experiencing the secondary growth, unstable microcracks
and stable microcracks S, Si7, S} can be evaluated by (22)-(24).

The stress—strain relation can be computed by

ey = (S + S} + S + 7)oy (27)
It is assumed that all microcrack are distributed uniformly in the orientations and sizes space. The stress—

strain relation for microcrack-weakened rock under dynamic uniaxial tensile loading can be expressed as
(for plane strain)

Fyoy (0 <03 < 0y),
& = [Fb +F(91)}62 (020 <oy < O-ch)v (28)
[Fb +F(02)]6266 (GSC <0y < 0-255)7
[Fo+ F(62) + F(O)]o2 (0 < 02 < 0y),
where
1—vg . (v, — 0.50)*(K&..)?
0,) = 0 p(c2 —¢*)(20, +sin20,), 3 =— Icc
(01) 47E, plc; )(20, 1) 3 (0r U)ZTCO'%
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1/2 1/2
C c F F 0 ce
0, = arccos <a_2> , 6, = arccos <U_2) ’ 0, = [Fo + F(6,)]o>

02cc %] [PE) + F(HZ) + F(HLL)] ’
1= 5 .
F(b,.) = 4nEy p(e; — ¢3) (20, +sin20,.),
1—vj : 1 —v2 1
F(0,) = 4EEV° plc = )20, +5in20,), K =— %o (1 +3 pc2> .
0 0

For mesoscopic heterogeneous rock, the probability density function describing the distribution of the
orientations of microcracks p(0) is approximated perfectly by Weibull distribution:

-3 (8 [ 2)]

where m is Weibull modulus, 6, is characteristic angle.
The probability density function describing the distribution of the sizes of microcracks p(c) is approxi-
mated perfectly by Rayleigh function:

(2] (2)]

where cq is characteristic length, 4 is the normalization constant (4 = 2/c).
To simplify the analysis, it is assumed that m = 1, the stress—strain relation for mesoscopic heteroge-
neous rock under dynamic uniaxial tensile loading is given as (for plane strain)

Fo, (0 < 0y < 02),
(A + F)o, (02e < 02 < Oxce),

b — (31)
(ﬂ +F3)O'2m (Usc <0y < 6200)7
(Fi+F+F)o (0<0 <0,

where
1 -2 pA
F = 011 + 1 4202 — 202 exp(—0.57/6,)) |,
1 Eo 1+403( 0 o exp( /00))

_ 2 _

B = (1 —vg)pbo(D tB 4) p ( Ou ) cos 0, (2 sin 0,1 — c0s O > — 20y exp ( %)

Ey(1 + 40,) 0o 0o 0o

(1 —v5)pb(C — B - D)
Eo(1 +467)

exp <_ 00—?) cos 0, (2 sin 0,9 — cozfuo ) — 200 exp <_ %_L:) )]

— 240 exp (— ZL()O> + (1 +20)C

(1=v3)p
Eo(1 +467)

)
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1 —v2)ply(D+B—4 0 0 0
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(1—v3)p
Eo(1 +4067)
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Co0 Coo Coo Coo
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00 [ Coo 2 Coo 00 oo
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(v — 0.51;)2(1(;1(:)2 ( sin 0, 2sin 6, sin 0, 2sin 6,9 )

{— 240 exp (— 2—2()) +(1 +29§)c},

Co = (v — U)zo'%(eul —0,) \3cos* 0,1 3cos O, " 3c0s3 0,0 3cosly
o — (F1 + F3) 02 on— (or — 0-50)2(K1dcc)2
s¢ — >, o . 3= :
F+F+F n(v, — v)za%

For m > 1, the stress—strain relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile
loading can be obtained similarly as Eq. (31).

It should be mentioned that the constitutive relations (28) and (31) are obtained without taking into
account interaction between microcracks. Such an assumption is an acceptable approximation for most
stages of rock material before a macrocrack initiates, even though localization of damage occurs in the
stage of tension softening because only a minority of microcracks experience secondary growth. If inter-
action between microcracks is considered, the constitutive relation will become more complicated. In our
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modelling, we have assumed the initial flaws to be two-dimensional slit cracks, however, one can extend the
present model to three-dimensional penny-shaped cracks and, of course, the results will become better.

3. Comparison with experimental results

In order to illustrate the four stages of the stress—strain relation predicted by the theoretical model, we
selected experimental results obtained by Okubo and Fukui (1996) for Inada rock specimens subjected to
uniaxial tensile loading. The magnitude of stress drop is 5.6 MPa, the drops occurred gradually over 130 s
in the experiment, thus stress rate is 4.3x 1072 s~!. The stress rate of 4.3x1072 s~ is in the dynamic
regime. The Inada rock is a relatively homogeneous and nearly brittle, compact rock whose proper-
ties and mechanical behavior are thoroughly known in rock mechanics. Since the crack growth length is
less than 25 cm in 130 s, the crack growth velocity v = d//d¢ is less than 0.1 m/s. As the velocity of
the Rayleigh wave for the granite is about 2000 m/s, the crack growth velocity v is small and the effect
on dynamic SIF under the dynamic regime can be neglected. The function k(v) can then be regarded as
one.

The following material parameters were used in computations for Inada rock:

Ey=137,600 MPa, ¢=75x10"*m, ¢ =5x10"m, K& =0.1 MPaym,
v =023, 0y =67 MPa, p=45x10°, 0,=01° K&.=0.85MPaym,
p(0) =1/m. (32)

In (32), the numerical values of Ey, vy, a2, were read off from the tests by Okubo and Fukui (1996). p, ¢, ¢,
were estimated by SEM observations, K., K. were estimated by the three-point bend tests. The solid
curves depicted in Fig. 2 represent the stress—strain relation predicted by the present model, while dots are
the experimental results measured by Okubo and Fukui (1996). It can be seen in Fig. 2 that the agreement
between theoretical and experimental results is fair good. Note that the material parameters (32) used in the
computations are realistic and documented in the referenced literature typically of micromechanical
models, the present formulation does not contain no fitting parameters. All the involved parameters have
clear physical meaning.

o /MPa

11 R

0 — 7T T T T T T T T T T T T T 1
00 02 04 06 08 10 12 14 16

e/10°

Fig. 2. The present model vs testing result for Inada rock.
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4. Sensitivity study of mechanical parameters toward stress—strain relation
4.1. Sensitivity study of fracture toughness K& toward stress—strain relation

The solid curves 1, 2, 3 and 4 depicted in Fig. 3 represent the stress—strain relation predicted by the
present model, when fracture toughness K. is 0.65, 0.85, 1.0 and 1.25 MPa,/m, respectively. It can be seen
in Fig. 3 that the magnitude of the stress drop is larger as well as the strength for microcrack-weakened
rock, as fracture toughness Kt is larger. It is obvious that fracture toughness Kt will mainly influence the
strength for microcrack-weakened rock.

4.2. Sensitivity study of the initial microcrack density parameter p toward stress—strain relation

The solid curves 1, 2, 3 and 4 depicted in Fig. 4 represent the stress—strain relation predicted by the
present model, when the initial microcrack density parameter p is 2.25x 103, 4.5x 10, 9x 10° and 1.8 x 10°,
respectively. It can be observed in Fig. 4 that strain is larger, as the initial microcrack density parameter p is
larger. It shows that the initial microcrack density parameter p will not affect the strength for microcrack-
weakened rock when the crack interaction effects are ignored.

4.3. Sensitivity study of the microcrack half-length c, c; toward stress—strain relation

The solid curves 1, 2, 3 and 4 plotted in Fig. 5 represent the stress—strain relation predicted by the present
model, when the microcrack half-length ¢, ¢, are 7x107* and 4.5x1073 m, 7.5x107* and 5x107° m,
8x 107 and 6x 1073 m, 9x 10~ and 7x 1073 m, respectively. It can be seen in Fig. 5 that strain is larger as
the microcrack half-length ¢, ¢, are larger, but the strength for microcrack-weakened rock will decrease as
the microcrack half-length ¢, ¢, become larger. It is evident that influence of the microcrack half-length ¢, ¢,
on the deformation and strength for microcrack-weakened rock are obvious.

4.4. Sensitivity study of the crack growth velocity v toward stress—strain relation

The solid curves 1, 2, 3 and 4 plotted in Fig. 6 represent the stress—strain relation predicted by the present
model, while the crack growth velocity v is 0, 100, 500 and 1000 m/s, respectively. It can be observed in

104
8
© 6
o
=
o 41 1 2 3 4
2
4 \
—_—
0 T T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5
e/10°

Fig. 3. Sensitivity of fracture toughness K- toward stress-strain relation.
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Fig. 4. Sensitivity of the initial microcrack density parameter p toward stress—strain relation.
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Fig. 5. Sensitivity of the microcrack half-length ¢, ¢, toward stress—strain relation.

Fig. 6 that the magnitude of the stress drop is smaller and time of stress drop is shortened as the crack
growth velocity v become larger. It is shown that the crack growth velocity v mainly affects the magnitude
of the stress drop and time of stress drop.

4.5. Sensitivity study of the crack growth velocity v combined with fracture toughness K. toward stress—
strain relation

The solid curves 1, 2, 3 and 4 plotted in Fig. 7 represent the stress—strain relation predicted by the present
model, while the crack growth velocity v and fracture toughness K- is 0 and 0.65 MPay/m, 100 m/s and
0.85 MPa+/m, 500 m/s and 1.0 MPa+/m, and 1000 m/s and 1.25 MPa+/m, respectively. It can be seen in Fig.
7 that the residual strength of microcrack-weakened rock is higher as the crack growth velocity v and
fracture toughness K. are larger.
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Fig. 6. Sensitivity of the crack growth velocity v toward stress—strain relation.
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Fig. 7. Sensitivity of the crack growth velocity v combined with fracture toughness K. toward stress-strain relation.

5. Sensitivity study of the crack growth velocity toward the strength of microcrack-weakened rock

The solid curve plotted in Fig. 8 represents the strength of microcrack-weakened rock predicted by the
present model, while the crack growth velocity v is in the range 0-1500 m/s. It is obvious in Fig. 8 that the
strength of microcrack-weakened rock is higher as the crack growth velocity v is larger if K. remains
constant. This is in agreement with results obtained later (Jin, 2001).
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Fig. 8. Sensitivity of the crack growth velocity v toward the strength of crack-weakened rock for fracture toughness K. = 0.85,
the microcrack half-length ¢, = 5 x 1073 m, the initial microcrack density parameter p = 4.5 x 10°,

6. Conclusions

Based on the micromechanics, the localization of deformation is analyzed and the complete stress—strain

relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading is investigated. The
main points are briefly summarized as follows:

()

2)

3)

“4)
&)

The deformation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading can
be splitted into the deformation due to an undamaged matrix, the stable microcracks, the unstable
microcracks propagating in a stable fashion, and the microcracks experiencing the secondary
growth.

The stress—strain relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading
include four stages, that is, the stage of linear elasticity, prepeak nonlinear hardening, stress drop
and strain softening. It is different from the conventional model that localization of damage and defor-
mation are introduced into the constitutive relation. The reasons causing localization of damage and
deformation are discussed.

The influence of all microcracks with different sizes and orientations are introduced into the constitutive
relation by using the probability density function describing the distribution of orientations p(6) and
the probability density function describing the distribution of sizes p(c). The influence of Weibull dis-
tribution describing the distribution of orientations p(6) and Rayleigh function describing the distribu-
tion of sizes p(c) on the constitutive relation are researched.

The validity of theoretical model is verified by experimental results.

It can be seen from sensitivity study of mechanical parameters toward stress—strain relation that frac-
ture toughness K. will mainly influence the strength for microcrack-weakened rock, influence of the
initial microcrack density parameter p on the deformation for microcrack-weakened rock is important,
the microcrack half-length ¢, ¢, will mainly affect the strength and deformation for microcrack-weak-
ened rock, effect of the crack growth velocity v on the magnitude of the stress drop and time of stress
drop is obvious, the crack growth velocity v combined with fracture toughness K. mainly influences
the residual strength of microcrack-weakened rock.
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(6) The crack growth velocity v evidently affects the strength of microcrack-weakened rock, the strength of
microcrack-weakened rock is higher as the crack growth velocity v is larger.
(7) One can extend the present model to three-dimensional penny-shaped cracks.
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