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Abstract

Stress redistribution induced by excavation results in the tensile zone in parts of the surrounding rock mass. It is

significant to analyze the localization of deformation and damage, and to study the complete stress–strain relation for

mesoscopic heterogeneous rock under dynamic uniaxial tensile loading. On the basis of micromechanics, the complete

stress–strain relation including linear elasticity, nonlinear hardening, rapid stress drop and strain softening is obtained.

The behaviors of rapid stress drop and strain softening are due to localization of deformation and damage. The

constitutive model, which analyze localization of deformation and damage, is distinct from the conventional model.

Theoretical predictions have shown to consistent with the experimental results.
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1. Introduction

Stress redistribution induced by underground engineering and slope engineering excavation results in the

tensile zone in parts of the surrounding rock mass. It has been observed that the ultimate failure strength of

rock is rate sensitive under dynamic uniaxial tensile loading. It is of important significance to investigate the

localization of deformation, and to study the complete stress–strain relation for mesoscopic heterogeneous

rock under dynamic tensile loading.

Efforts have been made to study the mechanism governing the rate-dependent behavior of rock mate-

rial under dynamic tensile loading. These researches on constitutive relation are mostly based on the
*Address: School of Civil Engineering and Mechanics, Shanghai Jiaotong University, Shanghai 200030, PR China. Tel.: +86-23-

6540-5987; fax: +86-23-6512-6168.

E-mail address: zhouxiaopinga@sina.com (X.-p. Zhou).

0020-7683/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2003.07.007

mail to: zhouxiaopinga@sina.com


1726 X.-p. Zhou / International Journal of Solids and Structures 41 (2004) 1725–1738
assumption of visco-elastic or visco-plastic model for rock material (Blanton, 1981; Chong et al., 1980;

Okubo et al., 1993; Jin, 2001).

Rock material is typically inhomogeneous, containing initial defects, such as grain boundaries, micro-

cracks and pores. Rock materials fail through fracture preceded by countless microcracks distributed over
the bulk of rock and propagating under dynamic tensile loading. Since the problem is complex, up to now

the problem is not solved by the micromechanical approach.

In this paper, based on the micromechanical approach proposed by Zhou (in press), the localization of

deformation is analyzed and the complete stress–strain relation for mesoscopic heterogeneous rock under

dynamic uniaxial tensile loading is investigated. The model leads to an overall anisotropic response due to

the growth of tensile cracks. The overall damage evolution equations as well as the complete stress–strain

relation in both the axial and transverse directions are obtained for rock material containing a number of

randomly oriented preexisting microcracks. As an illustration, theoretical stress–strain curves of rock
material under dynamic uniaxial tensile loads is given and compared with the experimental results.
2. Theoretical model

Consider a representative volume element featuring a mesoscopic length scale which is much larger than

the characteristic length scale of microcrack, but smaller than the characteristic length scale of a macro-

scopic specimen. Establish the global coordinate system (x1; x2) and corresponding local coordinate system
(x01; x

0
2), in which x02-axis is parallel to the normal vector n. It is assumed that the preexisting microcrack sizes

randomly vary within the range (2c0; 2c1), its normal forms an angle h with respect to x2-axis as depicted in

Fig. 1.

Under static uniaxial tensile loading, the stress intensity factors at the crack tip take the following form:
KI ¼ r2 cos
2 h

ffiffiffiffiffi
pc

p
; ð1Þ
where KI is the mode I stress intensity factors.

The criterion of microcrack growth under static uniaxial tensile loading in a stable fashion is
KI ¼ KIC ð2Þ
in which KIC is the mode I critical stress intensity factor at weak plane under static tensile loading.
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Fig. 1. Crack-weakened rock subjected to uniaxial tensile loading.
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Under dynamic loads, crack growth velocities have a great influence on the dynamic SIF. In most cases,

the dynamic SIF can be expressed as (Freund, 1973, 1990)
KID ¼ kðvÞKI ; ð3Þ
where KID is the dynamic SIF, KI is the static SIF, kðvÞ is a function of crack growth velocity (v). The
function kðvÞ ¼ 1:0 when v ¼ 0, and kðvÞ ¼ 0 when v reaches the critical velocity of the crack growth, which

is normally regarded as the velocity of a Rayleigh wave in the rock material.

The crack instability condition under dynamic loads is written as
KID ¼ Kd
IC; ð4Þ
where Kd
IC is the mode I critical stress intensity factor at weak plane under dynamic tensile loading, KID is

the mode I dynamic SIF.

The mode I dynamic stress intensity factor, for two-dimension in-plane crack growth, has been estab-

lished by Freund (1990). The dynamic stress intensity factor may be estimated by multiplying the equivalent

static stress intensity factor by an approximate formulation of kðvÞ for brittle material (Freund, 1973, 1990):
kðvÞ ¼ vr � v
vr � 0:5v

ð5Þ
when the tensile crack is loaded by only far field uniform stress, where vr is the velocity of Rayleigh wave,
v ¼ ðdl=dtÞ.

Substituting (1) and (5) into (3), the mode I dynamic stress intensity factor can be written as
KID ¼ vr � v
vr � 0:5v

r2 cos
2 h

ffiffiffiffiffi
pc

p
: ð6Þ
Substitution of (6) into (4), we have
r2 ¼
Kd

ICðvr � 0:5vÞ
ðvr � vÞ cos2 h

ffiffiffiffiffi
pc

p ; ð7Þ
where Kd
IC is the mode I critical stress intensity factor at weak plane under dynamic tensile loading.

From (7), it is clear that the first microcrack to become unstable is oriented along h ¼ 0 direction and

with maximum initial size c1, the corresponding threshold load is defined as
r2c ¼
Kd

ICðvr � 0:5vÞ
ðvr � vÞ ffiffiffiffiffi

pc
p

1

: ð8Þ
Since microcrack sizes randomly vary within the range (2c0; 2c1), the maximum and minimum micro-

crack size c1 and c0 should be used in (7) instead of c in order to determine the critical domain of unstable

microcrack growth. Therefore, (6) and (7) can determine the maximum angle, hu1, at which microcracks

with maximum initial size c1 become unstable. Similarly, the minimum angle, hu0, can be determined, at

which all microcracks become unstable.
hu1 ¼ arccos
ðvr � 0:5vÞKd

IC

ðvr � vÞr2

ffiffiffiffiffiffiffi
pc1

p
� �1=2

; hu0 ¼ arccos
ðvr � 0:5vÞKd

IC

ðvr � vÞr2

ffiffiffiffiffiffiffi
pc0

p
� �1=2

: ð9Þ
In addition, at a specified microcrack orientation h within the range (hu0; hu1), the minimum microcrack size

required to activate mode I growth can be evaluated from (7)
c01 ¼
ðvr � 0:5vÞ2ðKd

ICÞ
2

ðvr � vÞ2r2
2p cos4 h

: ð10Þ
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If 0 < r2 < r2c, that is, the stage of linear elasticity, no microcrack growth begins. The compliance tensor

attributable to a single open crack is given by (Sumarac and Krajcinovic, 1987)
Sij ¼
2pc2ð1� m20Þ

A0E0

ðg2ig2j þ g3ig3jÞ; ð11Þ
where A0 is the representative element area of rock material, E0 is Young�s modulus, m0 is Poisson�s ratio, gij
are the components of the transformation matrix between the two coordinate system:
½g	 ¼
cos2 h sin2 h sin 2h
sin2 h cos2 h � sin 2h
� sin 2h

2
sin 2h
2

cos 2h

2
4

3
5:
The inelastic compliance tensor due to all preexisting open microcracks with the original sizes can be

evaluated by
Si1
ij ¼

ð1� m20Þ
E0

q
Z p

2

0

Z c1

c0

ðg2ig2j þ g3ig3jÞpðcÞpðhÞc2 dcdh; ð12Þ
where q ¼ N=A0 and N is the number of microcracks, A0 is the representative element area of rock material,

pðhÞ and pðcÞ are the probability density function describing the distribution of orientations and sizes of
microcracks in rock material, respectively. E0 is Young�s modulus, m0 is Poisson�s ratio.

The overall effective compliance tensor can be obtained as
Sij ¼ S0
ij þ Si1

ij ð13Þ
in which S0
ij is the elastic and isotropic compliance of an undamaged rock material with Young�s modulus

E0 and Poisson�s ratio m0.
During the stage of linear elasticity, the stress–strain relation takes the following form:
eij ¼ ðS0
ij þ Si1

ij Þrij: ð14Þ
If r2 ¼ r2c, the microcracks in the plane h ¼ 0 with maximum initial size 2c1 become unstable and increase

in size until reaching maximum characteristic length 2c2.
If r2c 6 r2 < r2cc (r2cc is ultimate strength of rock material), that is, the stage of prepeak nonlinear

hardening, more microcracks become activated, the compliance tensor contributing from stable and un-

stable microcracks, Si1
ij , S

i2
ij can be computed as follows, respectively:
Si1
ij ¼

ð1� m20Þ
E0

q
Z p

2

hu1

Z c1

c0

ðg2ig2j þ g3ig3jÞc2pðcÞpðhÞdcdh

þ ð1� m20Þ
E0

q
Z hu1

huo

Z c01

c0

ðg2ig2j þ g3ig3jÞc2pðcÞpðhÞdcdh; ð15Þ

Si2
ij ¼

ð1� m20Þ
E0

q
Z hu0

0

Z c2

c0

ðg2ig2j þ g3ig3jÞc2pðcÞpðhÞdcdh

þ ð1� m20Þ
E0

q
Z hu1

hu0

Z c2

c01

ðg2ig2j þ g3ig3jÞc2pðcÞpðhÞdcdh; ð16Þ
where
hu1 ¼ arccos
ðvr � 0:5vÞKd

IC

ðvr � vÞr2

ffiffiffiffiffiffiffi
pc1

p
� �1=2

; hu0 ¼ arccos
ðvr � 0:5vÞKd

IC

ðvr � vÞr2

ffiffiffiffiffiffiffi
pc0

p
� �1=2

;
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c01 ¼
ðvr � 0:5vÞ2ðKd

ICÞ
2

ðvr � vÞ2r2
2p cos4 h

:

The overall effective compliance tensor can be expressed as
Sij ¼ S0
ij þ Si1

ij þ Si2
ij : ð17Þ
During the stage of prepeak nonlinear elasticity, the stress–strain relation can be written as
eij ¼ ðS0
ij þ Si1

ij þ Si2
ij Þrij: ð18Þ
Under high stress, some microcrack arrested by the energy barriers, like grain boundaries, will satisfy the

second growth criterion and propagate in an unstable fashion, causing localization of deformation and

damage. The second growth criterion under dynamic uniaxial tensile loading can be written as
KID ¼ Kd
ICC; ð19Þ
where Kd
ICC is the critical value of SIF describing the resistance of rock material against microcrack growth

under dynamic loading.

According to (6) and (19), it is clear that the first microcrack to become unstable are oriented along h ¼ 0

direction and with maximum characteristic size c2, the corresponding peak load is defined as
r2cc ¼
ðvr � 0:5vÞKd

ICC

ðvr � vÞ ffiffiffiffiffiffiffi
pc2

p : ð20Þ
If r2 < r2cc, no microcrack propagates in an unstable fashion.
If r2 ¼ r2cc, that is, the stage of rapid stress drop, some microcracks nearly normal to the tension

direction and with maximum characteristic size c2 propagate in an unstable fashion. As mentioned above,

the distribution of sizes and orientations of microcracks in rock material can be described by the proba-

bility density function pðcÞ and pðhÞ, respectively. If the number of microcracks normal to tensile direction

is zero, it is assumed that microcracks whose orientations are within a small orientation scope 06 h6 hcc

and with maximum characteristic size c2 propagate in an unstable fashion.

Once Eq. (19) is satisfied by microcracks whose orientations are within a small orientation scope

06 h6 hcc and with maximum characteristic size c2, they will experience the secondary unstable growth,
which may cause a transition from the distributed damage to the localization of damage and a rapid stress

drop at the transition strain ecc. During the stage, only microcracks whose orientations are within a small

orientation scope 06 h6 hcc and with maximum characteristic size c2 propagate further and other

microcracks undergo elastic unloading. In strain-controlled tests, the deformation which has received

contributions from all microcracks during the first two stages concentrates gradually to the minority of

microcracks experiencing the secondary growth, which results in a localization of deformation. Therefore,

the macroscopic stress drop is the result of the localization of damage and deformation.

The relation between c3 and r can be obtained approximately from the criterion (19), we have
c3 ¼
ðvr � 0:5vÞ2ðKd

ICCÞ
2

pðvr � vÞ2r2
2

: ð21Þ
The compliance tensor due to the microcracks experiencing the secondary growth can be obtained by
Si3
ij ¼

ð1� m20Þ
E0

q
Z hcc

0

Z c3

c2

c2ðg2ig2j þ g3ig3jÞpðhÞpðcÞdcdh: ð22Þ
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The compliance tensor contributing from unstable microcracks can be evaluated as
Si2
ij ¼

ð1� m20Þ
E0

q
Z hu2

0

Z c2

c0

ðg2ig2j þ g3ig3jÞc2pðcÞpðhÞdcdh

þ ð1� m20Þ
E0

q
Z hu3

hu2

Z c2

c01

ðg2ig2j þ g3ig3jÞc2pðcÞpðhÞdcdh; ð23Þ
where
hu3 ¼ arccos
ðvr � 0:5vÞKd

IC

ðvr � vÞr2cc
ffiffiffiffiffiffiffi
pc1

p
� �1=2

; hu2 ¼ arccos
ðvr � 0:5vÞKd

IC

ðvr � vÞr2cc
ffiffiffiffiffiffiffi
pc0

p
� �1=2

:

The compliance tensor attributing to stable microcracks can be computed as
Si1
ij ¼

ð1� m20Þ
E0

q
Z p

2

hu3

Z c1

c0

ðg2ig2j þ g3ig3jÞc2pðcÞpðhÞdcdh

þ ð1� m20Þ
E0

q
Z hu3

hu2

Z c01

c0

ðg2ig2j þ g3ig3jÞc2pðcÞpðhÞdcdh: ð24Þ
During the stage, the stress–strain relation can be evaluated by
eij ¼ ðS0
ij þ Si1

ij þ Si2
ij þ Si3

ij Þrij: ð25Þ
During the stage of stress drop, the strain maintains constant, we have
e2cc ¼ e2; ð26Þ

where e2cc is the axial strain at peak loads r2cc, e2 is the axial strain during stage of stress drop.

According to (26), the magnitude of the stress drop can be determined. It is assumed that the stage of

rapid stress drop intersects that of tension softening at the point where the value of stress is rsc.

If r2 < rsc, that is, the stage of strain softening. During the stage of strain softening, some of the mi-

crocracks which have undergone the secondary growth will propagate further, while other microcracks will
simultaneously experience unloading. Meanwhile the growth criterion (19) must be satisfied by microcracks

whose orientations are within a small orientation scope 06 h6 hcc and with maximum characteristic size c2.
The compliance tensor due to the microcracks experiencing the secondary growth, unstable microcracks

and stable microcracks Si3
ij , S

i2
ij , S

i1
ij can be evaluated by (22)–(24).

The stress–strain relation can be computed by
eij ¼ ðS0
ij þ Si1

ij þ Si2
ij þ Si3

ij Þrij: ð27Þ
It is assumed that all microcrack are distributed uniformly in the orientations and sizes space. The stress–
strain relation for microcrack-weakened rock under dynamic uniaxial tensile loading can be expressed as

(for plane strain)
e2 ¼

F0r2 ð0 < r2 < r2cÞ;
½F0 þ F ðh1Þ	r2 ðr2c < r2 < r2ccÞ;
½F0 þ F ðh2Þ	r2cc ðrsc < r2 < r2ccÞ;
½F0 þ F ðh2Þ þ F ðhccÞ	r2 ð0 < r2 < rscÞ;

8>><
>>: ð28Þ
where
F ðh1Þ ¼
1� m20
4pE0

qðc22 � c2Þð2h1 þ sin 2h1Þ; c3 ¼
ðvr � 0:5vÞ2ðKd

ICCÞ
2

ðvr � vÞ2pr2
2

;
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h2 ¼ arccos
r2c

r2cc


 �1=2

; h1 ¼ arccos
r2c

r2


 �1=2

; rsc ¼
½F0 þ F ðh2Þ	r2cc

½F0 þ F ðh2Þ þ F ðhccÞ	
;

F ðhccÞ ¼
1� m20
4pE0

qðc23 � c22Þð2hcc þ sin 2hccÞ;

F ðh2Þ ¼
1� m20
4pE0

qðc22 � c2Þð2h2 þ sin 2h2Þ; F0 ¼
1� m20
E0

1



þ 1

4
qc2

�
:

For mesoscopic heterogeneous rock, the probability density function describing the distribution of the

orientations of microcracks pðhÞ is approximated perfectly by Weibull distribution:
pðhÞ ¼ m
h0

h
h0


 �m�1

exp

�
� h

h0


 �m�
; ð29Þ
where m is Weibull modulus, h0 is characteristic angle.

The probability density function describing the distribution of the sizes of microcracks pðcÞ is approxi-
mated perfectly by Rayleigh function:
pðcÞ ¼ A
c
c00


 �
exp

"
� c

c00


 �2
#
; ð30Þ
where c00 is characteristic length, A is the normalization constant (A ¼ 2=c00).
To simplify the analysis, it is assumed that m ¼ 1, the stress–strain relation for mesoscopic heteroge-

neous rock under dynamic uniaxial tensile loading is given as (for plane strain)
e2 ¼

F1r2 ð0 < r2 < r2cÞ;
ðF1 þ F2Þr2 ðr2c < r2 < r2ccÞ;
ðF1 þ F3Þr2cc ðrsc < r2 < r2ccÞ;
ðF1 þ F3 þ F4Þr2 ð0 < r2 < rscÞ;

8>>>><
>>>>:

ð31Þ
where
F1 ¼
1� m20
E0

1

"
þ qA

1þ 4h2
0

ð1þ 2h2
0 � 2h2

0 expð�0:5p=h0ÞÞ
#
;

F2 ¼
ð1� m20Þqh0ðDþ B� AÞ

E0ð1þ 4h2
0Þ

exp


"
� hu1

h0

�
cos hu1 2 sin hu1



� cos hu1

h0

�
� 2h0 exp



� hu1

h0

�#

þ ð1� m20Þqh0ðC � B� DÞ
E0ð1þ 4h2

0Þ
exp


"
� hu0

h0

�
cos hu0 2 sin hu0



� cos hu0

h0

�
� 2h0 exp



� hu0

h0

�#

þ ð1� m20Þq
E0ð1þ 4h2

0Þ

"
� 2Ah2

0 exp



� p
2h0

�
þ ð1þ 2h2

0ÞC
#
;
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F3 ¼
ð1� m20Þqh0ðDþ B� AÞ

E0ð1þ 4h2
0Þ

exp


�
� hu3

h0

�
cos hu3 2 sin hu3



� cos hu3

h0

�
� 2h0 exp



� hu3

h0

��

þ ð1� m20Þqh0ðC � B� DÞ
E0ð1þ 4h2

0Þ
exp


�
� hu2

h0

�
cos hu2 2 sin hu0



� cos hu2

h0

�
� 2h0 exp



� hu2

h0

��

þ ð1� m20Þq
E0ð1þ 4h2

0Þ

�
� 2Ah2

0 exp



� p
2h0

�
þ ð1þ 2h2

0ÞC
�
;

F4 ¼
ð1� m20ÞqH
E0ð1þ 4h2

0Þ
h0 exp


�
� hcc

h0

�
cos hcc 2 sin hcc



� 1

h0

cos hcc

�
� 2h2

0 exp



� hcc

h0

�
þ 2h2

0 þ 1

�
;

A ¼ c20 exp

"
� c0

c00


 �2
#
þ c200 exp

"
� c0

c00


 �2
#
� c21 exp

"
� c1

c00


 �2
#
� c200 exp

"
� c1

c00


 �2
#
;

B ¼ c20 exp

"
� c0

c00


 �2
#
þ c200 exp

"
� c0

c00


 �2
#
� c202 exp

"
� c02

c00


 �2
#
� c200 exp

"
� c02

c00


 �2
#
;

C ¼ c20 exp

"
� c0

c00


 �2
#
þ c200 exp

"
� c0

c00


 �2
#
� c22 exp

"
� c2

c00


 �2
#
� c200 exp

"
� c2

c00


 �2
#
;

D ¼ c202 exp

"
� c02

c00


 �2
#
þ c200 exp

"
� c02

c00


 �2
#
� c22 exp

"
� c2

c00


 �2
#
� c200 exp

"
� c2

c00


 �2
#
;

H ¼ c22 exp

"
� c2

c00


 �2
#
þ c200 exp

"
� c2

c00


 �2
#
� c23 exp

"
� c3

c00


 �2
#
� c200 exp

"
� c3

c00


 �2
#
;

c02 ¼
ðvr � 0:5vÞ2ðKd

ICÞ
2

pðvr � vÞ2r2
2ðhu1 � hu0Þ

sin hu1

3 cos3 hu1



þ 2 sin hu1

3 cos hu1
� sin hu0

3 cos3 hu0
� 2 sin hu0

3 cos hu0

�
;

rsc ¼
ðF1 þ F3Þr2cc

F1 þ F3 þ F4
; c3 ¼

ðvr � 0:5vÞ2ðKd
ICCÞ

2

pðvr � vÞ2r2
2

:

For m > 1, the stress–strain relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile

loading can be obtained similarly as Eq. (31).

It should be mentioned that the constitutive relations (28) and (31) are obtained without taking into

account interaction between microcracks. Such an assumption is an acceptable approximation for most

stages of rock material before a macrocrack initiates, even though localization of damage occurs in the

stage of tension softening because only a minority of microcracks experience secondary growth. If inter-
action between microcracks is considered, the constitutive relation will become more complicated. In our
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modelling, we have assumed the initial flaws to be two-dimensional slit cracks, however, one can extend the

present model to three-dimensional penny-shaped cracks and, of course, the results will become better.
3. Comparison with experimental results

In order to illustrate the four stages of the stress–strain relation predicted by the theoretical model, we
selected experimental results obtained by Okubo and Fukui (1996) for Inada rock specimens subjected to

uniaxial tensile loading. The magnitude of stress drop is 5.6 MPa, the drops occurred gradually over 130 s

in the experiment, thus stress rate is 4.3 · 10�2 s�1. The stress rate of 4.3 · 10�2 s�1 is in the dynamic

regime. The Inada rock is a relatively homogeneous and nearly brittle, compact rock whose proper-

ties and mechanical behavior are thoroughly known in rock mechanics. Since the crack growth length is

less than 25 cm in 130 s, the crack growth velocity v ¼ dl=dt is less than 0.1 m/s. As the velocity of

the Rayleigh wave for the granite is about 2000 m/s, the crack growth velocity v is small and the effect

on dynamic SIF under the dynamic regime can be neglected. The function kðvÞ can then be regarded as
one.

The following material parameters were used in computations for Inada rock:
E0 ¼ 37; 600 MPa; c ¼ 7:5
 10�4 m; c2 ¼ 5
 10�3 m; Kd
IC ¼ 0:1 MPa

ffiffiffiffi
m

p
;

m0 ¼ 0:23; r2cc ¼ �6:7 MPa; q ¼ 4:5
 105; hcc ¼ 0:10; Kd
ICC ¼ 0:85 MPa

ffiffiffiffi
m

p
;

pðhÞ ¼ 1=p: ð32Þ
In (32), the numerical values of E0, m0, r2cc were read off from the tests by Okubo and Fukui (1996). q, c, c2
were estimated by SEM observations, Kd

IC, K
d
ICC were estimated by the three-point bend tests. The solid

curves depicted in Fig. 2 represent the stress–strain relation predicted by the present model, while dots are

the experimental results measured by Okubo and Fukui (1996). It can be seen in Fig. 2 that the agreement

between theoretical and experimental results is fair good. Note that the material parameters (32) used in the

computations are realistic and documented in the referenced literature typically of micromechanical
models, the present formulation does not contain no fitting parameters. All the involved parameters have

clear physical meaning.
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

1

2

3

4
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7

σ 
/M

Pa

ε /10-3

Fig. 2. The present model vs testing result for Inada rock.
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4. Sensitivity study of mechanical parameters toward stress–strain relation

4.1. Sensitivity study of fracture toughness Kd
ICC toward stress–strain relation

The solid curves 1, 2, 3 and 4 depicted in Fig. 3 represent the stress–strain relation predicted by the

present model, when fracture toughness Kd
ICC is 0.65, 0.85, 1.0 and 1.25 MPa

ffiffiffiffi
m

p
, respectively. It can be seen

in Fig. 3 that the magnitude of the stress drop is larger as well as the strength for microcrack-weakened

rock, as fracture toughness Kd
ICC is larger. It is obvious that fracture toughness Kd

ICC will mainly influence the

strength for microcrack-weakened rock.

4.2. Sensitivity study of the initial microcrack density parameter q toward stress–strain relation

The solid curves 1, 2, 3 and 4 depicted in Fig. 4 represent the stress–strain relation predicted by the

present model, when the initial microcrack density parameter q is 2.25 · 105, 4.5 · 105, 9 · 105 and 1.8 · 106,
respectively. It can be observed in Fig. 4 that strain is larger, as the initial microcrack density parameter q is

larger. It shows that the initial microcrack density parameter q will not affect the strength for microcrack-

weakened rock when the crack interaction effects are ignored.

4.3. Sensitivity study of the microcrack half-length c, c2 toward stress–strain relation

The solid curves 1, 2, 3 and 4 plotted in Fig. 5 represent the stress–strain relation predicted by the present

model, when the microcrack half-length c, c2 are 7 · 10�4 and 4.5 · 10�3 m, 7.5 · 10�4 and 5 · 10�3 m,

8 · 10�4 and 6 · 10�3 m, 9 · 10�4 and 7 · 10�3 m, respectively. It can be seen in Fig. 5 that strain is larger as

the microcrack half-length c, c2 are larger, but the strength for microcrack-weakened rock will decrease as

the microcrack half-length c, c2 become larger. It is evident that influence of the microcrack half-length c, c2
on the deformation and strength for microcrack-weakened rock are obvious.

4.4. Sensitivity study of the crack growth velocity v toward stress–strain relation

The solid curves 1, 2, 3 and 4 plotted in Fig. 6 represent the stress–strain relation predicted by the present

model, while the crack growth velocity v is 0, 100, 500 and 1000 m/s, respectively. It can be observed in
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Fig. 3. Sensitivity of fracture toughness Kd
ICC toward stress–strain relation.
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Fig. 5. Sensitivity of the microcrack half-length c, c2 toward stress–strain relation.
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Fig. 4. Sensitivity of the initial microcrack density parameter q toward stress–strain relation.
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Fig. 6 that the magnitude of the stress drop is smaller and time of stress drop is shortened as the crack

growth velocity v become larger. It is shown that the crack growth velocity v mainly affects the magnitude

of the stress drop and time of stress drop.

4.5. Sensitivity study of the crack growth velocity v combined with fracture toughness Kd
ICC toward stress–

strain relation

The solid curves 1, 2, 3 and 4 plotted in Fig. 7 represent the stress–strain relation predicted by the present

model, while the crack growth velocity v and fracture toughness Kd
ICC is 0 and 0.65 MPa

ffiffiffiffi
m

p
, 100 m/s and

0.85 MPa
ffiffiffiffi
m

p
, 500 m/s and 1.0 MPa

ffiffiffiffi
m

p
, and 1000 m/s and 1.25 MPa

ffiffiffiffi
m

p
, respectively. It can be seen in Fig.

7 that the residual strength of microcrack-weakened rock is higher as the crack growth velocity v and
fracture toughness Kd

ICC are larger.
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Fig. 6. Sensitivity of the crack growth velocity v toward stress–strain relation.
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Fig. 7. Sensitivity of the crack growth velocity v combined with fracture toughness Kd
ICC toward stress–strain relation.
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5. Sensitivity study of the crack growth velocity toward the strength of microcrack-weakened rock

The solid curve plotted in Fig. 8 represents the strength of microcrack-weakened rock predicted by the

present model, while the crack growth velocity v is in the range 0–1500 m/s. It is obvious in Fig. 8 that the

strength of microcrack-weakened rock is higher as the crack growth velocity v is larger if Kd
ICC remains

constant. This is in agreement with results obtained later (Jin, 2001).
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6. Conclusions

Based on the micromechanics, the localization of deformation is analyzed and the complete stress–strain

relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading is investigated. The

main points are briefly summarized as follows:

(1) The deformation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading can

be splitted into the deformation due to an undamaged matrix, the stable microcracks, the unstable

microcracks propagating in a stable fashion, and the microcracks experiencing the secondary

growth.

(2) The stress–strain relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading

include four stages, that is, the stage of linear elasticity, prepeak nonlinear hardening, stress drop

and strain softening. It is different from the conventional model that localization of damage and defor-

mation are introduced into the constitutive relation. The reasons causing localization of damage and
deformation are discussed.

(3) The influence of all microcracks with different sizes and orientations are introduced into the constitutive

relation by using the probability density function describing the distribution of orientations pðhÞ and
the probability density function describing the distribution of sizes pðcÞ. The influence of Weibull dis-

tribution describing the distribution of orientations pðhÞ and Rayleigh function describing the distribu-

tion of sizes pðcÞ on the constitutive relation are researched.

(4) The validity of theoretical model is verified by experimental results.

(5) It can be seen from sensitivity study of mechanical parameters toward stress–strain relation that frac-
ture toughness Kd

ICC will mainly influence the strength for microcrack-weakened rock, influence of the

initial microcrack density parameter q on the deformation for microcrack-weakened rock is important,

the microcrack half-length c, c2 will mainly affect the strength and deformation for microcrack-weak-

ened rock, effect of the crack growth velocity v on the magnitude of the stress drop and time of stress

drop is obvious, the crack growth velocity v combined with fracture toughness Kd
ICC mainly influences

the residual strength of microcrack-weakened rock.
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(6) The crack growth velocity v evidently affects the strength of microcrack-weakened rock, the strength of

microcrack-weakened rock is higher as the crack growth velocity v is larger.

(7) One can extend the present model to three-dimensional penny-shaped cracks.
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